GMRES Convergence for Perturbed Coefficient Matrices, with Application to Approximate Deflation Preconditioning

نویسندگان

  • Josef A. Sifuentes
  • Mark Embree
  • Ronald B. Morgan
چکیده

How does GMRES convergence change when the coefficient matrix is perturbed? Using spectral perturbation theory and resolvent estimates, we develop simple, general bounds that quantify the lag in convergence such a perturbation can induce. This analysis is particularly relevant to preconditioned systems, where an ideal preconditioner is only approximately applied in practical computations. To illustrate the utility of this approach, we combine our analysis with Stewart’s invariant subspace perturbation theory to develop rigorous bounds on the performance of approximate deflation preconditioning using Ritz vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability of Gmres Convergence, with Application to Approximate Deflation Preconditioning

How does GMRES convergence change when the coefficient matrix is perturbed? Using spectral perturbation theory and resolvent estimates, we develop simple, general bounds that quantify the lag in convergence such a perturbation can induce. This analysis is particularly relevant to preconditioned systems, where an ideal preconditioner is only approximately applied in practical computations. To il...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

A convergence improvement of the BSAIC preconditioner by deflation

Abstract We have proposed a block sparse approximate inverse with cutoff (BSAIC) preconditioner for relatively dense matrices. The BSAIC preconditioner is effective for semi-sparse matrices which have relatively large number of nonzero elements. This method reduces the computational cost for generating the preconditioning matrix, and overcomes the performance bottlenecks of SAI using the blocke...

متن کامل

Weighted Inner Products for GMRES and GMRES-DR

The convergence of the restarted GMRES method can be significantly improved, for some problems, by using a weighted inner product that changes at each restart. How does this weighting affect convergence, and when is it useful? We show that weighted inner products can help in two distinct ways: when the coefficient matrix has localized eigenvectors, weighting can allow restarted GMRES to focus o...

متن کامل

On the Convergence of GMRES with Invariant-Subspace Deflation

We consider the solution of large and sparse linear systems of equations by GMRES. Due to the appearance of unfavorable eigenvalues in the spectrum of the coefficient matrix, the convergence of GMRES may hamper. To overcome this, a deflated variant of GMRES can be used, which treats those unfavorable eigenvalues effectively. In the literature, several deflated GMRES variants are applied success...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013